Big Data and Media Studies: Year One.

Si, este post tiene el título en inglés. Todo lo escrito en los próximos párrafos proviene de mi magnífica experiencia en la International Communication Association (ICA) Annual Conference que se realizó en Londres hace unos días (aquí una reseña del evento). Como decía Jack el Destripador, vayamos por partes…

Big Data

No es la primera vez que hablamos de Big Data en Hipermediaciones. En diciembre del 2012 cerré el año con el post Occupy Semiotics (Hacia una semiótica del Big Data) que generó algo de polémica. En muchos campos del conocimiento la irrupción de nuevas formas de trabajar -basadas en la extracción, manipulación y visualización de millones de datos- está abriendo grietas en edificios epistemológicos que parecían bastante sólidos.

Repasemos brevemente lo que significa el Big Data para las ciencias sociales. Lev Manovich, el creador de la llamada Cultural Analytics, escribía en el 2011:

The emergence of social media in the middle of 2000s created opportunities to study social and cultural processes and dynamics in new ways. For the first time, we can  follow imaginations, opinions, ideas, and feelings of hundreds of millions of people. We can see the images and the videos they create and comment on, monitor the conversations they are engaged in, read their blog posts and tweets, navigate their maps, listen to their track lists, and follow their trajectories in physical space. And we don’t need to ask their permission to do this, since they themselves encourage us to do by making all this data public.

(…)

The rise of social media along with the progress in computational tools that can process massive amounts of data makes possible a fundamentally new approach for the study of human beings and society. We no longer have to choose between data size and data depth. We can study exact trajectories formed by billions of cultural expressions, experiences, texts, and links. The detailed knowledge and insights that before can only be reached about a few people can now be reached about many more people. In 2007, Bruno Latour summarized these developments as follows: “The precise forces that mould our subjectivities and the precise characters that furnish our imaginations are all open to inquiries by the social sciences. It is as if the inner workings of private world have been pried open because their inputs and outputs have become thoroughly traceable.” (Latour, Beware, your imagination leaves digital traces).

La colaboración entre informáticos y científicos de lo social es a estas alturas ineludible. Ya no basta con que los investigadores de la comunicación hablemos (y discutamos) con sociólogos, etnógrafos y psicólogos: la interacción de los comunicólogos con los expertos en datos, códigos y algoritmos es fundamental para comprender las dinámicas de la comunicación 2.0.

Basura-Espacial-e1298315784154

Dana Boyd y Kate Crawford (esta última presente en la ICA Conference) escribieron en el 2011 un paper ya clásico titulado Six Provocations for Big Data donde realizaron una inteligente lectura de este fenómeno. Ellas comienzan proponiendo una serie de interrogantes…

The era of Big Data has begun. Computer scientists, physicists, economists, mathematicians, political scientists, bio-informaticists, sociologists, and many others are clamoring for access to the massive quantities of information produced by and about people, things, and their interactions. Diverse groups argue about the potential benefits and costs of analyzing information from Twitter, Google, Verizon, 23andMe, Facebook, Wikipedia, and every space where large groups of people leave digital traces and deposit data. Significant questions emerge. Will large-scale analysis of DNA help cure diseases Or will it usher in a new wave of medical inequality? Will data analytics help make people’s access to information more efficient and effective? Or will it be used to track protesters in the streets of major cities? Will it transform how we study human communication and culture, or narrow the palette of research options and alter what ‘research’ means? Some or all of the above?

… y terminan dejando abierta la puerta a futuros desafíos:

By arguing that the Big Data phenomenon is implicated in some much broader historical and philosophical shifts is not to suggest it is solely accountable; the academy is by no means the sole driver behind the computational turn. There is a deep government and industrial drive toward gathering and extracting maximal value from data, be it information that will lead to more targeted advertising, product design, traffic planning or criminal policing. But we do think there are serious and wide-ranging implications for the operationalization of Big Data, and what it will mean for future research agendas. As Lucy Suchman (2011) observes, via Levi Strauss, ‘we are our tools.’ We should consider how they participate in shaping the world with us as we use them. The era of Big Data has only just begun, but it is already important that we start questioning the assumptions, values, and biases of this new wave of research. As scholars who are invested in the production of knowledge, such interrogations are an essential component of what we do.

5866777772_ca6beba460_z

Media Studies

¿Cómo llega el Big Data a los Media Studies? La impresión es que está llegando por la puerta grande y con intenciones de quedarse por un buen tiempo… En la conferencia ICA (un evento inmenso gracias a la presencia de unos 3.000 investigadores de todo el mundo) hubo varias sesiones dedicadas al tema. Traté de asistir a la mayoría. Para que se hagan una idea de las líneas de investigación y los ejes del debate, a continuación indico los papers que se presentaron en cada sesión (los interesados pueden ir tomando nota de nombres y centros de investigación):

Downsizing Data: Analyzing Social Digital Traces

  • Creating Social-Science Grounded Algorithms to Analyze Communication Dynamics in Big Data: Jennifer Stromer-Galley (U at Albany – SUNY), Tomek Strzalkowski (U at Albany – SUNY), George Aaron Broadwell (U at Albany – SUNY), Samira Shaikh (U at Albany – SUNY), Ting Liu (U at Albany – SUNY), Sarah Taylor (U at Albany – SUNY), Xiaoai Ren (U at Albany – SUNY), Feifei Zhang (U at Albany – SUNY), Jennifer Crowley (U at Albany – SUNY)
  • Where Everybody Knows Your Name: Tracing Regulars and Their Hubs From Social Media: Raz Schwartz (Rutgers U)
  • Occupies, Generators, and Tents: Resource Mobilization by OccupyNYC via Twitter: Shawn Walker (U of Washington)
  • Reblog If: Information Resharing on a Massive Creative Social Media Platform: Alex Leavitt (U of Southern California)

Social Media as Big Data, Big Business, Big Brother

  • The Political Economy of Algorithms: The Implications of Personalization Services in Social Media Sites: Robert Bodle (College of Mount St. Joseph)
  • Branded Content, Media Firms, and Data Mining: An Agenda for Research: Joseph Turow (U of Pennsylvania)
  • Tracing Worker Subjectivities in the Data Stream: Alison Mary Virginia Hearn (U of Western Ontario) Crowd-Sourced User Surveillance on Social Media Daniel Trottier (U of Westminster)
  • What We Talk About When We Talk About Privacy: Mark B. Andrejevic (U of Queensland)
  • What Do Social Media Users Think of Social Media Monitoring?: Helen Kennedy (U of Leeds)

Journalism at the Time of Big Data

  • Towards a Genealogy of Data Journalism: C.W. Anderson (College of Staten Island – CUNY)
  • Is There Room for Big Data in Journalists’ Skills?: Juliette De Maeyer (U Libre de Bruxelles)
  • How Data Tells Stories: Lorenz Matzat (OpenDataCity)
  • Data Validation Between Journalism and Social Sciences: Hille van der Kaa (Tilburg U)
  • Surveilliance, Sousveilliance, and Big Data (Journalism): Lisa Lynch (Concordia U)

Between Big Data and Deep Analysis? Scaling Digital Media Research

  • Methodological Challenges in Communication Research: Merja Mahrt (U of Dusseldorf) Michael Scharkow (U of Hohenheim)

Methodological Opportunities and Challenges in the Age of Social Media and “Big Data”: Beyond the Survey

  • Methods for Examining Language and Behavior in Virtual Communities: Adam Nicholas Joinson (U of the West of England)
  • Quant E-Data for the Qual Researcher: Tools for Gathering and Processing Online Data: Mike Arijan Thelwall (U of Wolverhampton)
  • Pairing “Big” Data With Not So Big Data: Opportunities and Challenges. Lauren Sessions Goulet (Facebook)
  • Methodological Diversity in Studying Facebook: Nicole Ellison (School of Information)

Big Data and Communication Research: Prospects, Perils, Alliances, and Impacts

  • Deconstructing Big Data: Database Ethnography, and Lessons Learned From Geocoding Wikipedia: Bernie Hogan (U of Oxford), Mark Graham (U of Oxford)
  • Wide Open or Locked Down? Platform Politics and Research Quality in Big Data Research: Cornelius Puschmann (Alexander von Humboldt Institute for Internet and Society)
  • Making Sense of Big Data: Developing a Social Science Research Agenda: Matthew Scott Weber (Rutgers U)
  • The Production of Big Data Knowledge: Danah Michele Boyd (Microsoft Research), Kate Crawford (U of New South Wales)
  • Big Data and Communications Research: Ralph Schroeder (U of Oxford), Eric Thomson Meyer (U of Oxford)

9780262018470

Big Data en la casa grande

Como se puede observar, en la ICA Conference se presentaron trabajos muy interesantes que marcan un camino… ¿Y por la casa grande latinoamericana, qué está pasando? Pasa lo de siempre: la curiosidad intelectual de mi imparable amigo Alejandro Piscitelli lo ha llevado una vez más a abrir una senda en esta intrincada selva de números y algoritmos. Con la efervescencia que lo caracteriza Alejandro está dejando caer pequeñas bombas de profundidad en el Mar de la Tranquilidad Epistemológica que reina en buena parte de las universidades latinoamericanas. Aquí algunas sugerencias de lectura para ir calentando el ambiente:

Hasta aquí llegamos por hoy. Para terminar de redondear este post les recomiendo la lectura del libro Digital Humanities publicado por el MIT Press. ¿Cuanto cuesta? Sólo un click: lo pueden descargar gratuitamente desde la web de la editorial.

Buena(s) lectura(s).

Anuncios

2 Comments

Add yours →

  1. Interesante artículo Carlos… a tener en cuenta… ¿Cómo puede influir el Big Data en la selección y brindis de información para la audiencia?
    ¿Puede ésto favorecer a un periodismo más personalizado como Pablo Mancini y otros tantos lo están diciendo?

  2. El Data Journalism es un campo emergente donde hay mucho para explorar y hacer. No creo que solucione los (grandes, inmensos) problemas del periodismo pero aporta algo de aire nuevo.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: